Organic matter as key to soil fertility & global warming mitigation?

Soil services & organic matter

100 cm

Soil fertility
Filter & Buffer
Carbon sequestration (global warming)
Flood prevention

RENDZIC LEPTOSOL CHERNOZEM

20-30 cm

Global carbon stocks

Global carbon stocks in Pg (1 Petagramm = 10^{15} g = 10^{9} t)

Global carbon stocks

Factors determining SOM

Climate change affects the soil carbon pool and vice versa changes in soil carbon affect the climate. For these relationships, land use and land management are major factors.

Novel insights

Molecular structure does not control long-term decomposition of SOM

Universität für Bodenkultur Wien

Schmidt et al. (2011)

- Data of surface horizons from 20 long-term field experiments
 - Temperate climate
 - 13C labeling to trace the residence time of SOM and individual molecular compounds
- Relatively persistent components such as lignin appear to turn over faster than the bulk SOM
- Over time, the importance of initial quality fades
- Intially fast-cycling compounds are just as likely to persist as the slow

Novel insights

The existence of humic substances has not been verified by direct measurements

a Historical view

b Emerging understanding

Universität für Bodenkultur Wien

Schmidt et al. (2011)

- From analysis of extracted materials it was postulated that de novo formation of humic polymers is an important source of recalcitrant SOM
- Direct high-resolution observations with nondestructive techniques have recently been able to explain the functional group chemistry of extracted humic substances as relatively simple biomolecules

Novel insights

Contrasting historical and emerging views of soil carbon cycling

Historical changes and perspectives

- Aims:
 - CO₂ sequestration
 - Minimizing losses of OC
- Soil management:
 - Tillage regime ?
 - Fertilization ?
 - Crop rotation ?
 - Cover crops ?
 - Input of organic carbon ?
 - Minimize soil erosion ?

Universität für Bodenkultur Wien

Weiseke et al. (2007)

Promising measures for enhancing soil carbon sequestration ?

Measure	Sequestration potential per unit area [t CO ₂ -eq. ha ⁻¹ a ⁻¹]	Emission reduction potential during first commitment period (EU15) [Mt CO ₂ -eq. a ⁻¹]
Promotion of organic input	1-3	20
Permanent revegetation of set- aside (increased soil carbon; part of afforestation)	2-7	15
Biofuel production on set-aside (increased soil carbon)	2-7	15
Promotion of organic farming	>0-2	14
Promotion of permanently shallow water table on peatland	5-15	15
Zero and/or conservation tillage	>0-3	<9

Conversion factor CO₂ : C = 3.67

Universität für Bodenkultur Wien

Realistic C sequestration potential in EU-15 during first commitment period (Mt C y⁻¹)

Freibauer et al. (2004)

Freibauer et al. (2004) Weiske (2007)

Universität für Bodenkultur Wien

Potential pitfalls of carbon sequestration policies

Fine mineral fraction controls potential for SOM sequestration / loss

Boxplot statistics (deciles, quartiles and median) of C saturation deficit related to (clay + fine silt) classes.

The theoretical value of C saturation (Csat) was calculated according to the equation proposed by Hassink (1997):

Csat = 4.09 + 0.37 (Clay + fSilt)

where Csat is the C saturation (g C/kg) expressed as the C content of the Clay + fSilt fraction on a whole-soil basis and Clay + fSilt is the clay (0–2 μ m particles) and fine silt (2–20 μ m particles) contents (% or g/100 g for this original equation), respectively.

Universität für Bodenkultur Wien

Angers et al. (2011)

Mapping carbon saturation deficit as tool for directing policy measures

Maps of carbon saturation deficit per canton: (A) mean estimate and (B) standard deviation from 100 Monte Carlo estimations of C saturation deficit. Letters refer to broad regional physiographic units: (a) Vosges; (b) Jura; (c) Massif Central; (d) Alpes; (e) Pyrenees; (f) Normandy; (g) Brittany; (h) Landes of Gascony; (i) Paris Basin; (j) Languedoc-Roussillon; (k) Alsace.

2

Universität für Bodenkultur Wien

Angers et al. (2011)

Effect of CAP / ÖPUL

Differences between the medians of SOM in arable soils in the periods 1991-1995 and 2006-2009 in three main crop production regions

AGES (2010)

Nordöstliches Flach- & Hügelland & Marchfeld

Initially higher carbon deficit due to intense cropping systems, low organic input SOM increase by green covers, direct drill...

17

17